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Abstract 

In this paper,  an  ultra-fast  smart  vision  system-on-a-chip  design is proposed  to  provide  effective 
solutions  for  real  time  machine  vision  applications  by  taking  advantages of recent  advances  in 
integrated  sensing/processing  designs,  electronic  neural  networks,  advanced  microprocessors  and 
sub-micron  VLSI  technology. The smart  vision  system  mimics  what is inherent  in  biological 
vision  systems.  It is programmable to perform  vision  processing  in  all  levels  such  as  image 
acquisition,  image  fusion,  image  analysis,  and  scene  interpretation. A system-on-a-chip 
implementation of this smart  vision  system is shown  to  be  feasible by integrating  the  whole 
system  into  a  3-cm x 3-cm  chip  design  in  a  0.18-pm CMOS technology.  The  system  achieves 
one  tera-operation-per-second  computing  power  that is a two order-of-magnitude  increase  over 
the  state-of-the-art  microcomputer  and DSP chips.  Its  high  performance is due to  massively 
parallel  computing  structures,  high data throughput  rates,  fast  learning  capabilities,  and  advanced 
VLSI  system-on-a-chip  implementation. This highly integrated smart vision system  can be  used for 
various NASA scientific missions and other military, industrial or commercial vision applications. 
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1. Introduction 

Machine vision is a challenging problem [ 1,2]. The challenge of this problem  is caused by the 
following tasks: variations in the sensing environment, limitations of the sensors, signal-to-noise issues, 
difficulties of processing algorithms, performance of computation power, real time processing 
requirements and field deployable requirements. The success of a versatile machine vision system 
depends on succeeding at all these tasks. In general, the goal  of a versatile machine vision system is of 
determining what  and how useful information should be extracted from images and delivering 
appropriate outputs for various tasks. Many  paradigms and algorithms have been  proposed over the  pass 
three decades toward this problem. However, a versatile machine vision system has not emerged yet. 

Recent advances in sensors, processors, integrated sensing/processing technology, electronic 
neural networks, and  VLSI technology appear to be very promising to provide solutions for  real  time 
machine vision problems [3,4,5]. In this paper, an  ultra-fast smart vision system-on-a-chip design is 
proposed to provide effective solutions for real time machine  vision applications by taking advantages  of 
advances in integrated sensing/processing designs, electronic neural networks, advanced microprocessors 
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and sub-micron VLSI technology. The proposed smart vision system mimics what is inherent in 
biological vision systems. Moreover, this vision  system is programmable  and capable of performing 
ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, 
scene interpretation, and control functions. The system provides about one tera-operation-per-second 
computing power  which is a two order-of-magnitude increase over that of state-of-the-art 
microcomputers. Its  high performance  is  due to massively parallel computing structures, high data 
throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation. This 
highly integrated smart vision system can be  used  for various NASA scientific missions and other 
military, industrial or commercial vision applications. 

Section two presents the smart vision algorithm and architecture. Section three describes the 
system  and  its on-chip building blocks. Section four describes the on-chip A P S  camera. Section five 
describes on-chip neural computer. Section six describes the on-chip microcomputer. Section seven gives 
a brief conclusion and future work. 

2. Smart Vision Processing Model and Algorithm 

The human visual system provides a demonstration of a versatile and powerful vision system. For a 
machine vision system, it is not necessary to copy all the details of the human visual system, but it is 
important to understand the true complexity behind its power  and flexibility. In general, much of the 
current machine vision research concerns not only understanding the process of vision but also designing 
effective vision systems for various real-world applications. 

The  proposed versatile machine vision system  is inspired by the human visual system. Its 
computation model  is  based  on a simplified model of the human visual system as shown in Figure 2.1. 
This simplified model of a human visual system consists of the following stages: 1. raw  image 
collection, 2. synthetic image generation, 3. images fusion, 4. fused images analysis, 5.  semantic 
interpretation [ 11. The ultimate design goal is to build an eye-brain machine  which can automatically 
recognize, localize, and classify point, area and  volume objects and  phenomena in real-time. In general, 
the eye-brain machine  (EBM) includes two major subsystems: the EBM Eye and the EBM Brain. The 
EBM Eye  is a compact optoelectronic subsystem which integrates a wide range of different sensors with 
geometric, radiometric, and spectral parameters meeting the actual science and mission requirements. 
The  EBM Brain is a high performance control and data handling subsystem, which provides computing 
resources to perform various on-board vision tasks. 

LearninglCoding  LearningKOding 

Low-level process 

Figure 2.1. A simplified model of the human  visual  process flow. 
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3. Smart Vision Processing Architecture and  Design 

3.1. A Rapid  Prototyping of the Eye-Brain  Machine  by  Using Commercial-off-the-shelf 
Components 

Figure 3.1 shows an example  system design  of  the eye-brain machine for the VIGILANTE. The 
VIGILANTE has  been under development at  JPL [4].  The VIGILANTE is an ultra-fast smart sensor for 
target recognition and precision tracking in a simulated cruise missile defense scenario. The 
VIGILANTE consists the VIGIL (Yiewing  IrnagedGimbaled Instrumentation Laboratory) and the ANTE 
(Analog  Neural Three-dimensional processing Experiment). VIGIL is an integrated optical system that 
splitskransmits the incoming light (steered by a gimbaled mirror) detected by the respective 
IFUvisiblekJV sensors. ANTE is the processing system that selects each sensor channel for processing. 

A rapid prototyping of the VIGILANTE system has  been performed  based  on the system 
diagram shown in Figure 3.1 by using commercial-off-the-shelf components. An APS camera captures 
the image  and sends it to an  image frame grabber via a serial bus. The  image  frame grabber holds the 
image and feeds columns or rows of all pre-sequenced 64x64  subwindow to the Column  Loading 
Formatter via the PC1 bus in the background. The  Column  Loading Formatter feeds a column or row of 
these pre-sequenced subwindows to the Column  Loading Input Chip every 250  ns (4 MHz). The 3- 
DANN-M then produces 64 inner-products (each with one 4096-dimensional image vector and a 4096- 
dimensional template vector) every 250 ns. The 64 analog outputs of  the 3-DANN-M are buffered and 
converted to 8-bit digital data by  using  an off-chip ADC  array at a rate of  4  MHz.  The system thus 
accomplishes 64 convolutions of a 256x256  image with 64x64 templates in 16 ms at a computation 
speed of about 1-tera operations per second. These  64 convoluted images generated by the 3DANN-M 
are stored in the Activity Memory  Banks  and then passed along to the Post Operation Processor (POP) 
for desired data fusion and various post operations. Currently, the Activity Memory  Banks  and the POP 
are implemented in four Adaptive Solution’s CNAPS array processor boards (each PCI-bus based board 
containing 128 SIMD processors and 32  megabytes  of memory). The  P6  computer perfoms command 
and control of VIGILANTE operations such as image acquisition, templates loading, point operation 
functions, scene interpretation, data recording, detection/tracking/classification/calibration mode 
command, etc. 

Today’s sub-micron fabrication enables designers to put millions of circuits into a single 
microchip to realize a complete system. Along with this capability, the system design and verification 
become extremely complex. However, lessons learned from the existing COTS-based prototype and 
thorough system-level simulations help us to define an effective system-on-a-chip smart vision system. 
This system level integration approach can eliminate these workaround-type PC1 cards used  in the 
VIGILANTE and also alleviate the data bandwidth bottleneck due to the PC1 bus. 

3.2. A Low-Power Ultra-Fast Eye-Brain  Machine  by  Using  System-on-a-chip  Technology 

Systems-on-a-chip (SOAC) technology enables a system level integration to put  an A P S  camera 
together with a neural computer and a microcomputer into a single chip. Figure 3.2 shows a system 
diagram of the proposed smart vision system. An on-chip row/column-parallel image flow architecture is 
used  to connect all on-chip systems and eliminate data bandwidth bottlenecks due to conventional bus 
architectures. The functional blocks include: (a) an on-chip A P S  camera, (b) an on-chip programmable 
neural computer, and (c) an on-chip microcomputer. The operation of each on-chip system is briefly 
described below. 

The on-chip A P S  camera is  used as the optical sensing array in the system. Windowed  image 
data are fed  to the on-chip neural neural processor under  the  control  of a smart window handler. The on- 
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chip neural computer is programmed to  perform various early vision tasks in high speed. This tera- 
operation-per-second neural processor serves as a supercomputing engine for various vision processing 
tasks due to its massively parallel computing structures and its programmability. The on-chip 
microcomputer is used to perform command and control of the system operation and scene 
interpretation. The vision system can work  with a remote host system through the muti-bus interface 
unit. The host computer will display the output image or vision science data. A system-on-a-chip 
implementation of this smart vision system is shown to be feasible by integrating the whole system into a 
3-cm x 3-cm chip design in a 0.18-pm CMOS technology (see Table 3.1). 

Table 3.1 : A smart vision system in a 3-cm x 3-cm chip design in a 0.18-pm CMOS technology 
kmart Vision Processor  ITechnoloav:  0.18-micron  CMOS I I I 
r i i -chio Svstem I Buildina  Block ISize (mm sa.) IPower (mW) I 
On-Chip Camera 

APS Sensor  (1 Kxl K) 

50 6 Smart Window  Handler 
100 15.55 image  Frame Memory( 1 MB) 
100 12.96 

On-Chip Microcomputer 
~ ~ ~~ 

0 
PowerPC750  Processor 

200 6 FPGA  1256Kaate) 
200 5.29 Bus  Interface 
200 7.78  512 KB SRAM 
200 497.66  128MB  Flash Memory 
300  10 

EEPROM(256KB) 3.89 

2650 733.27 Total: 

100 

(82% of a  30x30 mm SOAC  chip) 

. .  - 
~ Y -  - I  

3.3. SOAC Design V.S. COTS Design 

The eye-brain machine design based on system-on-a-chip (SOAC) technology has many advantages 
over the design based on the commercial-off-the-shelf (COTS) components. These SOAC-based design 
advantages over the COTS-based design are summarized as follows: 
(A). Higher On-Chip System Integration: System level integration facilitates innovative parallel 
processing architecture and ultra-fast data transfer structure while increasing system robustness. (B). lox 
Lower Power Dissipation: SOAC EBM consumes much less power than COTS EBM. COTS EBM 
systems tend to be inherently power hungry. This is because needing a lot of drivers for inter-board and 
inter-chip connections’capacitive load, needing external bus interface circuit to achieve acceptable data 
transfer efficiencies. A COTS system typically requires 100 Watts but an SOAC system requires 10 W 
for the same data throughput. 
(C). Speed & Performance: The SOAC EBM can operate at faster frame rates and greater processing 
speeds. On-chip circuits facilitates shorter interconnections, fewer contacts and drivers, faster devices, 
more efficient processing architecture and data transfer structure. 
(D). Affordability and Compactness: SOAC EBM has on-chip integrated circuitry to reduce cost and size 
(lox improvement in system miniaturization). The SOAC  EBM  uses  Very Large Scale Integration to 
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incorporate all necessary vision functions onto one chip. This CMOS integration allows for a very 
compact system, which increases reliability and reduces cost. 

vision system. 
The following sections describe technical details of each on-chip  system of the proposed smart 

: I  
: ,  ... 

Figure 3.1. An example  system 
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Figure 3.2. A system  diagram of the smart vision system. 

To/from 
Host System 

I2C 
-+ 
IEE1394 
-+ 
PC1 

4. APS Camera-on-a-chip 

4.1. CMOS Active Pixel Sensor Technology 

Propulsion Laboratory for electronic image capture [6] .  CMOS APS advantages over the CCD are 
summarized as follows: 
(A). lOOx Lower  Power Dissipation: CMOS A P S  consumes  much less power than CCD systems. A 
CCD  system typically requires 2-5 Watts (digital output) but an A P S  system requires 20-50 mW for the 
same pixel throughput. 
(B). Affordability and  Compactness:  CMOS A P S  has on-chip integrated circuitry to reduce cost and size 
(1 Ox improvement in system miniaturization). 
(C). Windowed Read-out: CMOS A P S  allows random access to pixel regions of interest. This column 
and row addressability allows for windows  of interest readout, which can be, utilized for machine vision 
applications needing image compression, motion detection or target tracking. 
(D). Image Quality: High quality CMOS A P S  images have no artifacts, smear or blooming. 
(E). Speed & Performance: CMOS A P S  sensors can operate at faster frame rates. 
(F). On-Chip Processing: CMOS A P S  has on-chip circuits to realize smart functions. 

In the A P S ,  both the photodetector and readout amplifier are part of  each pixel. This allows the 
integrated charge to be converted into a voltage in the pixel, which can then be read out over X-Y wires 
instead of using a charge domain shift register as in  CCDs. This column  and  row addressability allows 
for window of interest readout (windowing). This windowed  read-out feature provides added flexibility 
in machine vision applications needing image compression, motion detection or target tracking. 

High  performance  CMOS active pixel sensor technology has been developed by  NASA's Jet 

4.2. On-Chip APS Camera Design 

to  build the smart vision system for high definition vision applications. A hnctional design of the 
proposed on-chip A P S  camera is shown in Figure 4.1. These building blocks include an A P S  active 
sensor, a smart window handler, a front-end image processor (e.g. data compression) and an  image 
frame memory.  The on-chip camera performs image capture at a rate up to 30 frames per second. The 
on-chip camera  can feed the neural processor with input data  in a format of mxm sub-window which shift 
in x rows  and y columns basis through the whole image,  where x and y are integer ranged from 0 to n- 1. 
Where m and n are dimensions of the camera  and the neural computer, respectively. The smart image 
window handler is designed for  the row/column-parallel interface between the A P S  chip and the neural 
processor to achieve an ultra-fast frame time. 

The  1024x1024 APS is used as the optical sensing array and integrated with the neural processor 
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4.3. A Prototype APS Camera-on-a-chip 
A low power 1024x1024 CMOS A P S  (operate from a +3.3 V supply) using 0.5 pm n-well 

process was designed and characterized at E L .  Testing results show that the large format A P S  with 
small feature size (10-micron pixel pitch) is capable of excellent imaging performance. 

A block diagram and chip layout of the lKxlK A P S  prototype chip are shown in Figure 4.2. It 
contains a 1024x1024 photodiode or photogate pixel array and 1024 parallel 10-bit singles-slope ADC. 
The analog outputs are VS-OUT (signal) and VR-OUT (reset), and the digital outputs  are D-out0 to 
D-out9. The analog and digital readout chains are separated by  the pixel array. Each imager can  be 
operated in analog or digital readout mode. A full image of the lKxlK photodiode CMOS A P S  from the 
analog output is shown in Figure 4.3. 

I On-Chip A P S  Camera I 
I I I 

I 

I 
Address  Column  Sample  Hold & Readout 

I - 
I 
I 
I 
I Row ' 1 NxN Active  Pixel Array I Address v) (e.g. 1024x1024 photogate) Column-Loading 

I 
I 

I 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I  

I Front-End Image Processi """_ """"_ 
Figure 4.1. A Functional Design of the On-Chip Camera. 

Figure 4.2. Full Image of lKxlK Photodiode CMOS A P S  from the Analog Output. 
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Figure 4.2. (a) Block  diagram  of lKxlK CMO IS A P S  chip. (b) Layout of lKxlK CMOS MS. 

5. On-Chip  Neural Computer 

The building blocks of the proposed on-chip neural computer are shown in Figure 5.1. These 
building blocks include a programmable neural processor, a learning and post operation coprocessor, a 
programmable synaptic weight  memory  and an activity memory.  The on-chip neural computer can be 
used as a vision processor at  neighborhood  of the on-chip camera to perform various vision functions at 
very high speed. The neural computer performs the feature synthetic image generation, image fusion  and 
fused image analysis. Incorporating the neural computer into the proposed vision system offers orders- 
of-magnitude computing  performance  enhancements for real-time vision tasks. 

The  programmable neural processor is based  on optimization cellular neural network (OCNN) [9]. 
The OCNN is an  improved version of the Cellular Neural Networks  (CNN) [7]. The CNN has  been 
proved to be universal as the Turing machine [8]. The OCNN keeps this highly desired programmability 
and  become a versatile vision processor. The operation for different tasks depends primarily on the 
coefficients of the templates and the procedure to  apply them. A template includes the information for 
synapse weights, threshold values, and  boundary conditions. The learning of the templates is by defining 
an object function using semi- or non-parametric methods to iteratively update the weights. Many OCNN 
functions have been verified via system simulation. These functions include noise filtering, isolated pixel 
elimination, hole filling, morphological operations, image enhancement, edge detection, connected 
component detection, feature extraction, motion detection, motion estimation, motion compensation, 
object counting, size estimation, path tracking, collision avoidance, minimal and  maximal detection, etc. 

As shown in Figure 5.2, the OCNN is a multi-dimensional array of mainly identical cells, which are 
dynamic systems with continuous state variables and locally connected with their local cells within a 
finite radius. The significant design features of the OCNN are described briefly below. 

(A) Optimal Solutions of  Energy Function: 
Under  the  mild condition [7], a CNN autonomously finds a stable solution  for  which the Lyapunov 
function of the network is locally minimized. To improve the local  minimized energy function of the 
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basic CNN, the annealing capability is included to  accommodate  the applications in which the optimal 
solutions of energy function are needed. Hardware annealing [9] is a highly efficient method  of finding 
optimal solutions for cellular neural networks. 
(B) Multiple Layers with Embedded Maximum Evolution Functions: 
In the original CNN every pixel is represented by  one  neuron.  In the OCNN every pixel can be 
represented by multiple neurons which form a hyperneuron  and execute the maximum evolution function 
for various profile selections or the multi-sensor data synergy. 
(C) Digitally Programmable  Synapse Weights: 

To improve the fixed synapse weights of the CNN, the programmable synapse weights are designed  for 
the OCNN to accommodate the applications, which require programmable pre-determined operators. 
(D) High-speed Parallel External Image YO: 
To improve the data I/O bandwidth of the basic CNN, a 2-D array of optical receivers is integrated with 
the OCNN to accommodate the applications, which require high speed parallel image YO. 

From  on-chip 
Parallel  Synapse  Weight 
Neural & 
Processor  Activity  Memory 

To on-chip 
microcomputer 

I 

Learning  &Post  Operation 
Co-Processor 

I '  ' I  
Figure 5.1.  A functional diagram  of the on-chip neural computer. 

I 
Digital  Programmable  Weights 

I A(ij;kl) 

Figure 5.2. (a) An n-by-m OCNN on rectangular grid. The shaded  boxes are the neighborhood cells of 
C(ij). (b) Functional block diagram of the OCNN neuron C(ij). 
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6. On-Chip Microcomputer 

program memory, an UART circuit, a clock, a STAG test support unit, and a multi-bus interface unit. 
The building blocks of the multi-bus interface unit  include  an  IEEE 1394 interface, an 12C interface, and 
a PC1 bus interface. Host Interface Unit implements the IEEE  1394  bus for high-speed science data and 
the 12C bus for  low speed engineering data. The current version  of the IEEE 1394 bus can support data 
rates of  100 Mbps, 200 Mbps,  and 800 Mbps for the cable implementation, and  50  Mbps  and 100 Mbps 
for the backplane implementation. The 12C bus can support a data rate up to 100 Kbps (standard mode) 
or 400  Kbps (fast mode)  and  is capable to drive a maximum bus loading of 400 pf. The standard version 
can address up to 127 nodes (7-bit address) and the extended version can address up  to 1023 nodes (10- 
bit address). 

The building blocks of the on-chip microcomputer include a microprocessor, a data memory, a 

7. Conclusion 

( A P S )  integrated with a programmable neural processor for fast vision applications is presented. The 
concept of building a low  power smart vision system is demonstrated by a system design, which  is 
composed with an APS sensor, a smart image window handler, and a neural processor. The paper also 
shows that it is feasible to put the whole smart vision system into a single chip in a standard CMOS 
technology. This smart vision system on-a-chip can take the combined advantages of the optics and 
electronics to achieve ultra-high-speed smart sensory information processing and analysis at the focal 
plane. This highly integrated and ultra-high-speed information processing smart vision system on-a-chip 
can  be used on various NASA scientific missions and other industrial or commercial vision applications. 

A  low  power smart vision system  based  on a large format (currently 1KxlK) active pixel sensor 
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